On Modular Forms and Elliptic Curves over Q(ζ5)
نویسندگان
چکیده
We survey our joint work with Paul Gunnells and Farshid Hajir on a computational investigation of the modularity of elliptic curves over the cyclotomic field Q(ζ5), including the techniques we developed for describing the action of the Hecke operators using Voronoï theory.
منابع مشابه
Modular Forms and Elliptic Curves over Q(ζ 5 )
Let ζ5 be a primitive fifth root of unity, and let F = Q(ζ5). In this talk we describe recent computational work that investigates the modularity of elliptic curves over F . Here by modularity we mean that for a given elliptic curve E over F with conductor N there should exist an automorphic form f on GL2, also of conductor N , such that we have the equality of partial L-functions LS(s, f) = LS...
متن کاملOn the rank of certain parametrized elliptic curves
In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.
متن کاملGeneralized Jacobian and Discrete Logarithm Problem on Elliptic Curves
Let E be an elliptic curve over the finite field F_{q}, P a point in E(F_{q}) of order n, and Q a point in the group generated by P. The discrete logarithm problem on E is to find the number k such that Q = kP. In this paper we reduce the discrete logarithm problem on E[n] to the discrete logarithm on the group F*_{q} , the multiplicative group of nonzero elements of Fq, in the case where n | q...
متن کاملp - adic Modular Forms over Shimura Curves over
In this thesis, we set up the basic theory of p-adic modular forms over Shimura curves over Q, parallel to the classical case over modular curves. We define and study the structure of the spaces of p-adic modular forms with respect to certain quaternion algebras over Q. We study the relation of these modular forms with classical quaternionic modular forms. We prove a canonical subgroup theorem ...
متن کاملModular Abelian Varieties of Odd Modular Degrees
In this paper, we will study modular Abelian varieties with odd congruence numbers by examining the cuspidal subgroup of J0(N). We will show that the conductor of such Abelian varieties must be of a special type. For example, if N is the conductor of an absolutely simple modular Abelian variety with an odd congruence number, then N has at most two prime divisors, and if N is odd, then N = p or ...
متن کامل